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Abstract

Splitting techniques break an ill-conditioned indefinite system resulting from incompressible Navier–Stokes equations into well-con-
ditioned subsystems, which can be solved reliably and efficiently. Apart from the ambiguity regarding numerical boundary conditions for
the pressure (and for intermediate velocities, whenever introduced), splitting techniques usually incur splitting errors which reduce time
accuracy. The discrete approach of approximate factorization techniques eliminates the need of numerical boundary conditions and
restores time accuracy by an approximate inversion of some matrix in the case of semi-implicit time schemes. For linear implicit,
non-linear implicit, and higher-order semi-implicit time schemes, however, approximate factorization techniques are laborious. In this
paper, we systematically present a new and straightforward exact factorization technique. The main contributions of this work include:
(1) the idea of removing the splitting error or the idea of restoring time accuracy for fully discrete systems, (2) the introduction of the
pressure-update type and the pressure-correction type of exact factorization techniques for any time schemes, and (3) an analysis of sev-
eral established techniques and their relations to the exact factorization technique. The exact factorization technique is implemented with
a standard second-order finite volume method and is verified numerically.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The incompressible Navier–Stokes equations in non-
dimensional form are described as
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where Hi � o
oxj

ðujuiÞ, ui is the velocity component in the xi
direction, fi is the body force, and Re is the Reynolds num-
ber. For decades, a numerical simulation of this system has
remained as one of the most interesting topics, and the
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pressure term is believed by many to be a source for trou-
ble. The indefinite system due to the mixed formulation, in
which velocities and pressure are solved simultaneously
without any manipulations, is ill-conditioned [9]. In such
a system, a relatively small change in some entry of the
matrix results in a relatively large change in the solution.
Hence, accumulated computer round-off errors or some
inherent perturbations of iterative processes make the con-
vergence very hard to achieve. When the size of the system
increases or when the physical solutions tend to be more
rugged as a consequence of higher Reynolds numbers or
discontinuities, the conditioning of the discrete system fur-
ther deteriorates so that the convergence becomes even
more difficult. In some situations, eventually the discrete
system becomes singular and no solution can be found.
This is why successful simulations of high Re incompress-
ible flows with finite difference methods and finite element
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methods in mixed formulation are rare. In some situations,
pressure stabilized methods help to improve the behavior
of the discrete system to some degree. However, these
methods often invoke some ad hoc parameters and are
too expensive for implementation. Also, none of the stabi-
lized methods could reach high-order spatial accuracy, and
in fact frequently only a first-order accuracy could be at-
tained. Furthermore, all stabilized methods fail to decrease
the size of the discrete system.

To tackle the pressure term, various artificial compress-
ibility (AC) types of methods were invented, such as Cho-
rin’s AC for steady flows [5], the consistent penalty method
[2], the generalized AC (the iterative Uzawa algorithm) for
transient flows [4], and the reduced integration penalty
method [18]. Generally speaking, these methods converge
slowly and sometimes fail to converge. Often, the range
of appropriate parameters to maintain both reliability
and efficiency is narrow. Moreover, some methods in this
category are not able to produce accurate results for pres-
sure and some are not able to reduce the size of the discrete
system. Vorticity-stream function formulation [12] is very
competitive in 2-D and 3-D axisymmetric calculations. In
general 3-D calculations the stream function does exist
[26]; however, both the vorticity and the stream function
have three components. Even in 2-D and 3-D axisymmetric
calculations, the derived boundary conditions for the vor-
ticity incurs either loss of accuracy or loss of flexibility of
numerical methods.

Splitting methods (also known as projection/operator-
splitting/time-splitting/fractional-step methods) remain
popular among numerical community. The first two papers
on the subject were Harlow and Welch’s marker-and-cell
(MAC) method [17] and Chorin’s projection method [6].
Both methods take a first-order explicit scheme, and both
require no initial boundary conditions for pressure which
is consistent with the original mathematical system. We
would like to call them, including Kim and Moin’s [21] sec-
ond-order semi-implicit fractional-step (splitting) method,
pressure-update (PU) methods. In PU methods, the pres-
sure or some variable closely related to the pressure is
solved according to a Poisson equation. In contrast, one
may solve the change of the pressure from a Poisson equa-
tion. Examples are second-order methods by van Kan [29]
and Bell et al. [1], and higher-order methods by Karniada-
kis et al. [20]. We would like to refer to the latter category
pressure-correction (PC) methods.

The issue of the boundary conditions for the Poisson
equation, as well as boundary conditions for intermediate
velocities (whenever introduced), has in the past sparked
a considerable debate [17,6,7,22,24,8,21,29,15,1,13,14,20,
10,23,27,25,3,16] (in chronic order). According to [27],
the accuracy of finite difference schemes ‘‘depends critically
on the boundary condition for the intermediate velocity.’’
However, the numerical boundary condition for the pres-
sure Poisson equation (PPE) is implied in the system
already and actually is not required in practice, as shown
in the PC type of approximate factorization technique by
Dukowicz and Dvinsky [10] and in the PU type of approx-
imate factorization technique by Perot [23]. The exact fac-
torization technique to be introduced in this paper requires
no numerical boundary conditions at all.

The elusive issue of splitting error has also drawn sizable
attention, in that many of those papers on the issue of
numerical boundary conditions also concern the issue of
time accuracy. According to Perot [23], a lower-order split-
ting-induced term in the momentum equation is pointed
out as the source of the trouble. Approximate factorization
techniques remove the splitting error through an approxi-
mate inversion of some matrix. Quarteroni et al. [25]
presented a framework for splitting methods and approxi-
mate factorization techniques, including Perot’s approach.
However, the exact factorization technique presented in
this paper takes a different path in terms of restoring time
accuracy.

In the next section we progressively introduce the exact
factorization technique. We start from a specific time and
spatial discretization, discuss the approach of approximate
factorization to split the system, and introduce the exact
factorization technique. Then, we generalize the technique
to any time scheme and introduce another version of exact
factorization. After that, we compare the technique with
the semi-discrete counterpart and make some additional
comments on the exact factorization technique. In the fol-
lowing section, a reduced version of exact factorization
technique is discussed and comparisons to several well
known techniques are made. Implementation and numeri-
cal results make up another full section to support the
technique.

2. Exact factorization technique

2.1. Temporal and spatial discretizations

The momentum equation (1) indicates that the pressure
gradient should stay at the same site with the time deriva-
tive of the velocity, in the four-dimensional space–time
coordinates system. This implies that at the same time level,
the pressure node should stagger from velocity nodes as on
the MAC staggered grid. This also implies that the time
level for pressure should stagger from the time level for
velocity. Since the pressure, which appears only in the
momentum equation, is not initially specified, the momen-
tum equation should be displaced from the initial time
level.

In light of the above views, we assign time levels for the
velocity and for the numerical pressure / as shown in
Fig. 1. The idea of numerical pressure was introduced by
Kim and Moin [21] and will be further discussed later,
but tentatively we may simply regard it as the pressure.
The incompressibility is satisfied on time levels for the
velocity while momentum equations are satisfied on time
levels for pressure. It is noted that in space the incompress-
ibility is satisfied at pressure nodes while momentum equa-
tions are satisfied at velocity nodes, just opposite to the



Fig. 1. Schematic for time marching.
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case of the time. As indicated in Fig. 1, in a typical step
both uni and un�1

i are known and new /nþ1
2 and unþ1

i are to
be sought.

With a semi-implicit scheme, second-order Adams–
Bashforth for the convection term and second-order
Adams–Moulton for the diffusion term, the continuous
system (1) and (2) becomes
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where the variable time step Dtn � tn+1�tn and the convec-
tion term
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so that the globally second-order time accuracy for the
velocity is maintained. The above system can be recast as
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which is a semi-discrete (discrete in time, continuous in
space) description of the original continuous system.

With a typical spatial discretization method such as
finite volume method, the semi-discrete system (4) and (5)
can always be written in a fully discrete form
1
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Dunþ1 ¼ Sd. ð7Þ

In the above system (6) and (7), matrix L denotes the dis-
crete Laplace operator with adjustment to Dirichlet or
Neumann boundary conditions. Matrix G represents the
discrete gradient operator on the pressure, and this opera-
tor is not subjected to modifications in the vicinity of
boundaries, if discretized on a MAC staggered grid. Matrix
D denotes the discrete divergence operator with adjustment
to Dirichlet or Neumann boundary conditions. Vector un+1

contains all discrete unknowns for velocities and vector
pnþ

1
2 contains all discrete unknowns for the pressure. Vector

Sl stands for the source term due to inhomogeneous
Dirichlet boundary conditions on the discrete Laplace
operator and vector Sd stands for the source term due to
inhomogeneous Dirichlet boundary conditions on the dis-
crete divergence operator. Finally Hnþ1

2 is the discrete form
of (3) and it has all relevant boundary conditions included.
By defining
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we have a fully discrete system in a compact matrix form
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Note, by default in the above spatial discretization only
discrete unknowns in the interior of the flow domain are
contained in un+1 and pnþ

1
2. If discrete velocities on bound-

aries are regarded as unknowns and boundary conditions
are regarded as additional discrete equations, the format
of system (9) has to be modified.

With velocities and the pressure coupled, system (9) is
called in mixed form and it is difficult to solve the system
directly, as elaborated in Section 1.

2.2. Perot’s approximate factorization

To have a context for the exact factorization technique
to be analyzed in the next subsection, here Perot’s approx-
imate factorization (block LU decomposition) technique
[23] is rephrased. We begin with first-order approximate
factorization. It is hard to factorize the system (9) exactly.
However, the approximated system
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can be easily factorized as
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By introducing intermediate velocities u* the above LU
decomposition is equivalent to the following set:

1

Dtn
I � 1

2Re
L 0

D DG

2
4

3
5 u�

Dtnpnþ
1
2

( )
¼

Su

Sd

� �
;

I G

0 I

" #
unþ1

Dtnpnþ
1
2

( )
¼

u�

Dtnpnþ
1
2

( )
.

Or, we have
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For the sake of block LU decomposition, the system (11),
(13) or equivalently the system (10) is only of first-order
accuracy in time, while the system before manipulations
is of second-order accuracy. This is because the discrete
momentum equation in (9) is approximated by the discrete
momentum equation in (10), and the discrepancy is the
term Dtn

2Re LGpnþ
1
2, which is of first-order accuracy.

To regain the second-order accuracy in time, one may
adopt Perot’s approach [23], which is rephrased as follows.
A system in the format of
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can be easily decomposed into
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Choosing B to be approximate inversion of A can remove
the splitting error. For example, if choosing

B ¼ Dtn I þ Dtn

2Re
L

� �
;

then system (14) differs from system (9) only by a second-
order term, that is, the second-order accuracy is recovered.

2.3. Exact factorization technique for semi-implicit schemes

For high-order schemes, Perot’s approach to recover
accuracy becomes laborious [23]. Here we may play a much
simpler trick to regain time accuracy. The first-order
approximation (10) only made one modification to the ori-
ginal discrete system (9), and the consequence is an addi-
tional term in the momentum equation which causes loss
of accuracy in time. If this term is absorbed into the pres-
sure gradient term, the original discrete momentum equa-
tion can recover accuracy. Following this idea, we may
introduce the numerical pressure (or gauge pressure) /
and replace the first-order approximation (10) by

1
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which is of course a factorizable system because it mimics
system (10). If the numerical pressure is implicitly defined by

1
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2 � Gpnþ
1
2; ð16Þ

then we notice that for discrete velocities the system (15)
and the system (9) are identical. In other words, we have
split the system without loss of time accuracy.

As in Perot’s approximate factorization, the system (15)
can be factorized and rewritten as

1
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In addition, Eq. (16) may be replaced by
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2Re
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We may implicitly (in a coupled way) solve (17) to obtain
u*, implicitly solve discrete Poisson system (18) for numer-
ical pressure /nþ1

2, and finally explicitly update discrete
velocities in accordance with (19). The vector Su is defined
by (8), which involves the definition of H

nþ1
2

i by (3). The real
pressure is never involved in the time marching procedure
and can be recovered from (20) in a post-processing man-
ner. Hence, the essence of the above trick is to absorb into
the pressure some first-order numerical error, which is
introduced for the sake of breaking the ill-conditioned
indefinite system into well-conditioned subsystems, to
maintain second-order accuracy for velocities. The whole
technique is called exact factorization.

Another extremely important feature of the exact factor-
ization technique must be pointed out: since the starting
point for the system (17)–(19) is the discrete system (9)
which has all the necessary boundary conditions included,
no numerical boundary conditions for the numerical pres-
sure / or for the intermediate velocities u* are needed.

2.4. Exact factorization technique for any time schemes

The exact factorization technique is not limited to semi-
implicit time schemes only. With any time schemes and
spatial methods, a straightforward discretization of Eqs.
(1) and (2) will produce a system of form
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where the non-singular matrix A represents all possible dis-
crete operators on the velocity, matrices G and D denote
discrete gradient operator and divergence operator respec-
tively, u and p contain all discrete unknowns, and Su and Sd

stand for two known vectors. It is worthwhile to point out
that all boundary conditions have been incorporated in the
system (21). For instance, Sd is the consequence of applica-
tion of Dirichlet boundary conditions for the continuity
equation. For the velocity, the fully discrete indefinite sys-
tem (21) is equivalent to
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if the numerical pressure / is defined implicitly through

AG/ � Gp. ð23Þ

The existence of such a / will be discussed shortly. The sys-
tem (22) can be factorized
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where I is the identity matrix. Introducing an auxiliary vec-
tor u*, the factorized form breaks into the following pair:
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which can be recast into

Au� ¼ Su; ð24Þ
DG/ ¼ Du� � Sd; ð25Þ
u ¼ u� � G/. ð26Þ

The auxiliary u* needs no boundary conditions since it is a
discrete vector instead of a continuous variable. We may
first explicitly or implicitly solve Eq. (24) to obtain the
auxiliary vector u*, then implicitly solve Eq. (25) for the
numerical pressure /, and finally explicitly update u by
expression (26). Eq. (23) can be used to recover the real
pressure in a postprocessing manner

DGp ¼ DAG/.

The whole algorithm does not, different from Perot’s
approximate factorization, resort to an approximate inver-
sion of matrix A, thus it is referred to exact factorization
technique.

The legitimacy of defining / through Eq. (23) is tanta-
mount to the solvability of / through Eq. (25). The non-sin-
gularity of A guarantees that u* can be found through (24),
and the operator DG actually is the discrete counterpart of
Laplace operator. Thus, / can be found through (25).
The exact factorization technique presented so far
belongs to PU type of methods, where the Poisson operator
acts on the numerical pressure. In the PC approach the
Poisson operator acts on the change of numerical pressure.
It is advised to derive the PC version of exact factorization
technique from the PU counterpart.

2.5. Pressure-correction type of exact factorization technique

Assigning a time index to system (24)–(26), we have
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where the time dependency of Su is not indicated because of
its irrelevance to the current discussion. In the previous
time step, the counterpart for Eq. (28) is
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Subtracting Eq. (30) from Eq. (28) we obtain
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we obtain a PC type algorithm
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The first time step (n = 0) is solved according to the PU
type algorithm (27)–(29). Sd enters the system through
the first step.

2.6. Relation to Kim and Moin’s splitting method

The idea of absorbing numerical error into pressure
was first exercised by Kim and Moin [21] in a semi-discrete
version. Kim and Moin’s splitting method can be rephrased
as
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where / is numerical pressure (or gauge pressure, pseudo-
pressure). The real pressure can be calculated in a postpro-
cessing manner

pnþ1 ¼ /nþ1 � Dt
2Re

o2/nþ1

oxjoxj
.

System (31)–(33) is the semi-discrete analogy of fully dis-
crete system (17)–(19) with Su defined through (8), except
some irrelevant differences such as / are defined differently
and Sd is not explicitly mentioned in the semi-discrete ver-
sion. When a staggered grid is used, Eq. (33) does not re-
quire any boundary condition for the numerical pressure
/. However, boundary conditions for / and for û must
be provided in the Poisson equation (32).

In Kim and Moin’s splitting method, a temporal discret-
ization is carried out first, then the semi-discrete system is
split, and finally a spatial discretization is conducted. Such
an algorithm invites the issue of numerical boundary con-
ditions. If we maintain the temporal discretization as the
first phase, but discretize the semi-discrete system into a
fully discrete system as the follow-up phase, and split the
discrete system finally, then we completely eliminate
the need of assigning numerical boundary conditions for
the Poisson equation. Because, when the discrete system
is about to split all boundary information has been
included in matrices and vectors. It is noted that, we can
interchange the orders of the temporal discretization and
the spatial discretization because there are no actions taken
between these two phases.

2.7. Some comments on exact factorization technique

Since the 1960s, many techniques have been proposed to
resolve the issue of numerical boundary conditions and
splitting errors due to splitting methods, which in turn were
invented to solve ill-conditioned indefinite systems effi-
ciently, and more importantly, reliably. It turns out that
these two issues can be resolved by this simpler exact fac-
torization technique, as well as by two more involved
approximate factorization techniques [10,23], in a straight-
forward and elegant manner. One may notice that the exact
factorization approach diverges from the mixed formula-
tion at a very late stage. Computer codes for incompress-
ible flows in mixed formulation can be easily modified to
adopt the exact factorization algorithm. As a matter of
fact, one may write a linear solver using the exact factoriza-
tion technique for indefinite systems. It is worthwhile to
point out that the exact factorization technique is applica-
ble to many indefinite systems, including incompressible
material in solid mechanics, incompressible flows in fluid
mechanics, and the divergence-free magnetic flux density
in electrodynamics.

The exact factorization technique presented can be
implemented in accordance with linear implicit and non-
linear implicit schemes. For a one-step second-order non-
linear implicit scheme using successive substitution, the A

and Su in system (22) are interpreted as
A ¼ 1
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HðupÞ;

Su ¼ 1

Dtn
I þ 1

2Re
L

� �
un þ 1

Re
Sl � 1

2
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where up stands for the predicted solution vector for veloc-
ity, and H in the current context denotes a matrix depen-
dent on discrete velocity vectors. For a two-step linear
implicit scheme

up ¼ 1þ Dtn
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j .

Approximate techniques [10,23] have to pay attention to
the originally used time schemes to maintain time accuracy
and avoid excessive operations. In contrast, the time accu-
racy in exact factorization technique is determined by the
original time schemes being selected and remains irrelevant
to the technique itself.

If one insists using splitting methods where numerical
boundary conditions must be determined, we recommend
to use exact factorization technique as a tool to identify
the right boundary conditions. For example, if we follow
the convention that discrete velocities on boundaries are
not included as unknowns, by comparing matrices and vec-
tors generated by Chorin’s projection method and the
explicit exact factorization finite volume method (EEF-
FVM), the right boundary conditions for the intermediate
velocity and pressure on solid walls can be identified. It
turns out that the boundary conditions for the intermediate
velocity and pressure in Chorin’s projection method have
infinite number of combinations. For simplicity, on solid
walls we can impose u�i ¼ 0 and op

on ¼ 0. Boundary condi-
tions on open boundaries can be determined in a similar
way.

3. Explicit exact factorization

The system (22) is open for any time scheme. If a first-
order explicit time scheme is adopted for some numerical
methods (excluding finite element methods), A ¼ 1
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We may factorize Eq. (34) into
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2

( )
¼

Su

Sd

� �
;

or equivalently

1

Dt
u� ¼ Su ¼ 1

Dt
un þ 1

Re
Lun � HðunÞ þ f n; ð35Þ

DG Dtpnþ
1
2

� �
¼ Du� � Sd; ð36Þ

unþ1 ¼ u� � G Dt pnþ
1
2

� �
. ð37Þ
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The system (35) and (37) can be further condensed into

DG Dtpnþ
1
2

� �
¼ DðDtSuÞ � Sd; ð38Þ

unþ1 ¼ DtSu � G Dtpnþ
1
2

� �
; ð39Þ

which was also implied in Perot’s paper [23]. This reduced
system of (38) and (39) is named explicit exact factorization

(EEF).

3.1. Relation between explicit exact factorization

and Chorin’s projection method

We first review some key steps in Chorin’s projection
method [6], which consists of

u�i � uni
Dt

¼ � o

oxj
ðunj uni Þ þ

1

Re
o2uni
oxjoxj

þ fi; ð40Þ

o2p
oxjoxj

¼ 1

Dt

ou�j
oxj

; ð41Þ

unþ1
i � u�i
Dt

¼ � op
oxi

. ð42Þ

Chorin’s projection method was derived in a semi-discrete
approach. Chorin’s original formulation adopted the ‘‘con-
vection’’ form for the non-linear term, which is less advan-
tageous than the conservative ‘‘divergence’’ form presented
here. Because the non-conservative form produces a local
numerical error, at the same order of the truncation error
of the spatial discretization. Such a local numerical error
is benign in a smooth flow but may accumulate in case
the flow displays large gradients. In the Chorin’s projection
method, one first explicitly obtains the intermediate veloc-
ity field based on Eq. (40), then implicitly solves PPE (41)
to obtain the pressure field, and finally the new velocity is
updated explicitly by Eq. (42).

Since Eq. (40) is explicit for the intermediate velocity, no
numerical boundary condition for u�i is needed. On a stag-
gered grid, Eq. (42) does not need any boundary conditions
for the pressure. However, in Eq. (41), apart from a numer-
ical boundary condition for pressure, which is typically
derived by application of normal component of momen-
tum equation on boundaries, a numerical boundary condi-
tion for intermediate velocity must also be provided. Eqs.
(35)–(37), which are free of numerical boundary condition
issue, represent the discrete counterparts of Eqs. (40)–(42)
in Chorin’s projection method, which demand numerical
boundary conditions. Note, by comparing the system
(35)–(37), its equivalent system (38) and (39), and the sys-
tem (40)–(42), it becomes apparent that the intermediate
velocity in Chorin’s projection method merely serves as a
variable for temporary storage.

3.2. Relation between explicit exact factorization

and MAC method

The MAC method was introduced in one of the most
celebrated papers [17] in computational fluid dynamics
(where MAC staggered grid, finite volume method, PPE,
and Marker-And-Cell free surface capturing technique
were introduced in one single paper), albeit the induction
of the issue of numerical boundary condition is a source
for debate. The MAC method could have resolved the
issue, as we show below while reviewing some key steps
of the method.

Harlow and Welch first expressed discrete velocities at
time station n + 1 by discrete velocities at time station n

and discrete pressures, symbolically

unþ1
i ¼ f ðuni ; pjÞ; ð43Þ

where we use subscripts to denote all discrete unknowns.
The subscript for discrete velocities differs from that for
discrete pressures due to the fact that pressure nodes are
staggered from velocity nodes in space. At this point, one
important aspect of the method must be reminded. The sys-
tem (43) was intended by Harlow and Welch for all discrete
velocity nodes, no matter they are well away from bound-
aries or not.

Then, Harlow and Welch imposed incompressibility at
time station n + 1 using discrete velocities at time station
n + 1

Djðunþ1
i Þ ¼ 0. ð44Þ

Replacing velocities in Eq. (44) by expression (43), Harlow
and Welch obtained discrete pressure Poisson equation,
which was subsequently in need of the numerical boundary
condition.

To avoid the issue of numerical boundary conditions, in
the vicinity of boundaries we may supplement Eq. (43) by
additional expressions of discrete velocities

unþ1
i ¼ gðuni ; pjÞ; ð45Þ

where boundary conditions on velocities have been incor-
porated. With expressions (43) and (45) in derivation of
discrete PPE, numerical boundary conditions have no
chance to come into play, which results in change of func-
tional structure f( ) to g( ). Therefore, in essence our expli-
cit exact factorization finite volume method differs from the
original MAC only in respect to the timing of applying
boundary conditions.

3.3. Relations among Chorin’s projection method, MAC

method, and continuous PPE approach

The continuous PPE approach is described as follows.
By taking a divergence on the momentum equation

r � o~u
ot

þr � ð~u~uÞ ¼ �rp þ 1

Re
r2~uþ~f

� �
;

and imposing the incompressibility at time level n + 1

r �~unþ1 ¼ 0;



Fig. 2. Computational domain for the cavity flow simulation.

Table 1
Spatial convergence rate of square cavity flow at Re = 400

Grid 32 · 32 64 · 64 128 · 128

u at y = 0.015625 �0.05407 �0.05804 �0.05909
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we obtain the continuous PPE

r2p ¼ r � 1

Dt
~un �r � ð~u~uÞn þ 1

Re
r2~un þ~f

� �
. ð46Þ

Discretization of Eq. (46) usually needs boundary condi-
tions for pressure.

Chorin’s projection method takes a semi-discrete
approach, theMACmethod and explicit exact factorization
technique take discrete approach, and continuous PPE
takes a continuous approach. A discrete approach like
MACmethod or explicit exact factorization, if wisely imple-
mented, is more advantageous. However, the advantage of
MAC method is waived due to the late application of
boundary conditions. Consequently, the discrete approach
of MAC method [17] turns out to be identical to the contin-
uous PPE approach of Eq. (46). By comparing the first two
equations of Chorin’s projection method, (40) and (41), and
the continuous PPE (46), again we notice that the interme-
diate velocity merely serves for the temporary storage of
some information in the Poisson equation. Hence, in effect
Chorin’s projection method is also identical to the continu-
ous PPE approach. Thus, the relations among the semi-
discrete approach of Chorin’s projection method, the fully
discrete approach of the MAC method, and the fully
continuous PPE approach are revealed. That is, following
different methodologies, the three formulations produce
identical discrete systems (if the same kind of numerical
boundary conditions are adopted). We have to mention that
matrices and vectors created in these three formulations
have been compared and their agreements support our ana-
lysis. A similar view on the relation between MAC method
and Chorin’s projection method was expressed in [10].

4. Implementation and numerical results

4.1. Implementation

The exact factorization technique involves sparse
matrix–matrix multiplications, which only costs OðNÞ oper-
ations, where N stands for the size of a matrix. Two flows
are tested on the standard MAC staggered grid with a sec-
ond-order semi-implicit exact factorization finite volume
method (SIEF-FVM), a second-order explicit exact factor-
ization finite volume method (EEF-FVM), a second-order
linear implicit exact factorization finite volume method
(LIEF-FVM), and a one-step second-order fully non-linear
implicit exact factorization finite volume method (NIEF-
FVM). Both pressure-update and pressure-correction for-
mulations are implemented and to reach the same accuracy
they do not display sizable difference in performance. In
all calculations, results based on SIEF-FVM, EEF-FVM,
LIEF-FVM, NIEF-FVM agree with one another extremely
well. Two recent non-stationary linear solvers, BiCGStab
[28] and GPBiCG(m,l) [30,11] are also employed for the
well-conditioned systems but they do not display superior
performance over a simple classical stationary linear solver,
Gauss-Seidel.
The criterion for convergence of steady solution and for
the Gauss-Seidel linear solver is set as

max
jxkþ1 � xkj
1:0þ jxkþ1j

� �
< 10�7;

where k denotes the iteration level. For stability reason in
the case of EF-FVM, if a forward Euler is used the time
step may satisfy

Dt < min
Re
4
h2x ;

Re
4
h2y ;

4

ReðjU j þ jV jÞ2

 !
; ð47Þ

where hx and hy are defined in Fig. 2, and U and V repre-
sent local velocity components. Criterion (47) is derived by
fixing local convective velocities as constants then using
Fourier stability analysis. For flow problems being consid-
ered in lid-driven cavity flow, we simply take jUj = jVj = 1.
In the code, the time step is taken half of the value satisfy-
ing criterion (47), since the second-order Adams–Bashforth
being used has a smaller convergence radius.

4.2. Cavity flow

Cavity flow possesses corner singularities which result in
non-smoothness of the solution in some regions. Our
numerical experiments with mixed formulation show that
at high Re or with very fine grids the large discrete system
fails to produce sensible results, due to deteriorating condi-
tioning number of the indefinite system. On the other hand,
the exact factorization technique is designed to solve
incompressible flows efficiently, and more importantly, reli-
ably. Hence, a cavity flow under a fine grid is an ideal case
to show the success of the exact factorization technique.

Velocity profiles on the vertical midplane in a square
cavity flow are calculated on the configuration illustrated
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Fig. 3. Comparisons of mid-plane x-component velocity for the square cavity flow for (a) two-sided, (b)–(d) one-sided.
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in Fig. 2. The spatial convergence rate is checked at a point
close to the lower (at y = 0.015625) wall as displayed in
Table 1, where u1 is the result based on a 32 · 32 grid
and likewise u2 and u3 are based on two other grids. The
results show that ju1�u2j

ju2�u3j
¼ 4:0, which indicates second-order

convergence rate. Fig. 3(a) shows that our results based on
four different time schemes are in excellent agreement with
each other. Fig. 3(b) and (d) compares the results based on
SIEF-FVM with those from a multigrid finite difference
method in vorticity-streamfunction (VS) formulation [12].
At Re = 1000, these results match each other very well.
At Re = 3200 and 5000 our results based on SIEF-FVM
(on 256 · 256) differ from Ghia’s (on 128 · 128) to some
extent. There are two possible reasons for these slight dis-
crepancies. As Re increases, a finer grid becomes more nec-
essary, while the grid used in VS formulation [12] for
Re = 3200 and 5000 remains the same for all calculations.
Also, the numerical boundary conditions for vorticity,
which is unavoidable in VS formulation, may introduce
some appreciable errors.

4.3. Periodic cavity flow

We consider a transient Navier–Stokes flow inside a
unity square cavity with all boundaries fixed, but under
the influence of a supplied body force. The time-periodic
exact solution is prescribed similar to [19]
uðx; y; tÞ ¼ �sin t sin2 px sin py cos py;

vðx; y; tÞ ¼ sin t sin px cos px sin2 py;

pðx; y; tÞ ¼ sin t sin px cos py;

which vanish at t = 0 and vanish on four boundaries x = 0,
x = 1, y = 0, and y = 1. The appropriate body force func-
tions can be derived by substituting exact solutions into
the momentum equation (1),

fx ¼�cost sin2pxsinpy cospyþp sin2 t sin3 pxcos pxsin2 py

þpsin tcos pxcos py

� p2

Re
sin t ð6sin2 px�2cos2 pxÞsin py cospy;

fy ¼ cost sin pxcos pxsin2 pyþpsin2 t sin2 pxsin3 py cos py

�psin t sin pxsin py

þ p2

Re
sin t sin pxcos px ð6sin2 py�2cos2 pyÞ.

Comparisons between numerical solutions and exact solu-
tions in Fig. 4 show excellent agreements.

We also employ the periodic cavity flow to examine time
accuracy. The mid-plane x-component velocity is calcu-
lated at t = 0.64 with three different time steps, 0.0004,
0.0002, and 0.0001. Four different rules are used for time
accuracy study and they are displayed in Table 2, and
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Fig. 4. Comparisons of numerical results (on a 64 · 64 grid) with exact solutions for the square periodic cavity flow: (a) mid-plane x-component velocity
and (b) mid-plane pressure.

Table 2
Temporal convergence rate of periodic cavity flow at Re = 1000 on a 64 · 64 grid

Rule II: k � jju� uexactjj
jjuexactjj

Rule III: k � max
ju� uexactj
1þ juexactj

� �
Rule IV: k � u �uexact

k for Dt = 0.0004 5.795 · 10�4 2.143 · 10�4 1.587 · 10�6

k for 1
2Dt 1.479 · 10�4 5.38 · 10�5 7.237 · 10�6

k for 1
4Dt 4.22 · 10�5 1.36 · 10�5 8.474 · 10�6

jkðDtÞ � kð12DtÞj
jkð12DtÞ � kð14DtÞj

4.08 3.99 4.57

In Rule IV, u and uexact are evaluated at y = 0.0078125.
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jjujj � 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiX
k

u2k
r

;

where k denotes number of points being evaluated along
the mid-plane. Rule I is a self-checking of the convergence
rate and does not refer to the exact solution, with the result
jjuðDtÞ�uð12DtÞjj
jjuð12DtÞ�uð14DtÞjj

¼ 3:97. In contrast, Rules II, III, and IV refer

to the exact solution hence a discrepancy between the
numerical solution and the exact solution can be displayed
in Table 2 for each time step size. In rule IV of the point-
wise convergence rate examination, a point very close to
boundary (y = 0.0078125) is chosen to make sure the sec-
ond-order accuracy is maintained even in the boundary
layer. Note, in rule IV we may take an equivalent definition
of k � u so that, as in rule I, the exact solution is no longer
required. Clearly, Table 2 and the result from rule I show
that the exact factorization technique can break up the
indefinite system into well-conditioned smaller ones with-
out sacrificing the original time accuracy, which is sec-
ond-order in our implementation.
5. Conclusions

In this paper, we have presented the technique of exact
factorization to treat indefinite systems, especially for those
arising from incompressible flows. The technique was par-
ticularly inspired by works documented in [21,10,23]. As a
matter of fact, the idea of introducing a numerical pressure
[21] and the idea of fully discretizing continuous systems
before any further operations [10,23] should be regarded
as two cornerstones of the current technique. The tech-
nique presented here is independent of selected time
schemes and does not involve approximate inversion of
matrices. The technique is free of numerical boundary con-
dition issue simply because the splitting happens after the
temporal and spatial discretizations. In addition, some
well-known techniques are compared and their close rela-
tion to the explicit exact factorization technique is eluci-
dated. Finally, some numerical evidences are provided to
support analysis made in this paper. Implementation of
the exact factorization technique follows the mixed formu-
lation methods till a very late stage; therefore, codes writ-
ten in traditional finite element methods, spectral
methods, or other spatial methods can be easily converted
into the exact factorization manner. However, some chal-
lenges related to the pressure still remain, such as the need
of a rapid Poisson solver and a unified approach to tackle
both incompressible and compressible flows.
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